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Abstract. We formulate and analyze parallel preconditioners for systems of equations arising from
the p-version finite element method. Using new theoretical results for polynomial spaces, we prove that
condition number grows as log” p, where p is the degree of the polynomial space. Nunierical results are
presented showing that the condition number indeed grows very slowly with p.

Key words. p-Version Finite Element Method, Preconditioning, Domain Decompusition, Parallel
Computation, Polynomial Sobolev Inequality, Polynomial Extension Theorems '

1. Introduction. In this paper, we study fast parallel preconditioners for systems of
equations arising from the p-version finite element method. The p-version finite element
method [4, 5] achieves increase of precision by increasiug th= degree of elements rather than
decreasing their size as the h-version.

The finite element method is based on a variational formulation of the original problem:

Find v such that

(1.1) ve H: a(u,v)=f(v)VveH

where H is a Hilbert space, a(u,v) = a(v,u) is a bilinear form defined on H x H and fisa
bounded linear functional defined over H. We assume that a(u,v) satisfies

(1.2) Cullly < a(w,u) < Cllulif;, € > 0.

The finite element method consists of choosing a finite dimensional subspace S C H and
posing problem (1.1) on § x §. In what follows the bilinear form a(u,v) is understood to be
on § x §. Selecting basis (shape) functions for S transforms problem (1.1) into the problem
of finding the solution of a system of linear equations

(1.3) Az = y

where A is a positive definite symmetric matrix.
Our basic approach to solving (1.3) is the preconditioned conjugate gradient method.
We construct a preconditioning form c(u,v) such that

(1.4) mic(i. ) 7 a(u,u) < mac(u,u), 0<my < my,

holds for any u € S. The form c(u,v) is also chosen so that the problem c(u,v) = g(v) (for
an appropriate linear form g(v) and a chosen set of basis functions) is easier to solve than
the original problem. We show that the relative condition number m;/m, grows at most as
fast as log?(p) for one type of finite element space, and as plog’ p for another.
The solution of the problem with the bilinear form ¢(u,v) decomposes into local highly T~
parallelizable computations and the solution of a relatively small global auxiliary problem. 0
We study two different methods. In the first (Section 3}, the global problem is identical
to the system for p = 1, which presents a very small part of the computational cost for high -

p. This method is related to the domain decomposition method by Bramble, Pasciak, and
Schatz (7] for the h-version. For other pertinent considerations, sec Babuska, Griebel, and ~ _ ____|
Codes

. t/or
T vist . Spwolal
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Pitkaranta 3], Babuska and Elman [1], Babuska, Elman, and Markley [2], and Williams [23];
for numerically computed condition numbers and relation to other methods, see Mandel [16].
For another related method using preconditioning by elements of order higher than one for
three-dimensional elasticity, see Mandel [15].

In the second method (Section 5), the global system has one variable per element,
which correponds to an avarage or the solution on every element. This method was inspired
by the methods of Dryja [11] and Bramble, Pasciak, and Schatz [7] for the h-version in
three dimensions, and an analogous method was developed by Mandel [14, 16, 17] for the
p-version in three dimensional elasticity. Note that the first method leads to a fast growth
of the conditicn number in the three-dimensional case [16]. The analysis in this paper could
be used also for three-dimensional problems subject to availability of appropriate extension
theorems.

The paper is organized as follows: For the reasons of clarity of presentation, the methods,
their analysis, and practical results are presented in the first five sections of the paper, while
technical auxiliary results are given only at the end. In Section 2, we introduce some
notation and conveitions. In Section 3, we formulate and analyze the first preconditioner.
Numerical results for a parallel implementation of this preconditioner are presented in
Section 4. Section 5 contains analysis of the second preconditioner. Sections 6 and 7
contain auxiliary results about Sobolev norm estimates for polynomial spaces, which are oi
separate interest. In Section 6, we prove a discrete Sobolev inequality for polynomials on a
segment, and bound the HJJZ norm of a polynomial with zero boundary values in terms of
its H'/2 norm. Section 7 contains various results about H' bounded polynomial extensions
of functions defined by polynomials on the the boundary of a triangle or a square. The
theoretical results of the last two sections are related to the results of Bramble, Pasciak and
Schatz (8, 10, 9, 7] and Widlund [21, 22| for the h-version.

We would like to express our appreciation of the interest and comments of Professor
Olof Widlund relating to the results of this paper.

2. Notation, Conventions, and Preliminaries.Let R be two dimensional
Euclidean space and

Q={(en) eR|iEl<1lnl <1},
T:{(f,n)€R2|0<q<\/§(£+1),—1<£<0, or0<q<\/§(1—§),0<§<1}

be the reference square and triangle as shown in figures 2.1 and 2.2, respectively. We shall
use the generic notation K for both Q and T when the distinction is unimportant.

The image of Q (resp. T) under the mapping Fg (resp. Fy), Fy : Q — Q = Fu(Q)
(resp. F; : T — T = F;(T)) is denoted by Q (resp. T). Similarly to before we use the
notation K for both () and T when the distinction i1s unimportant.

We shall assume that the mapping FQ is a bijection and that

lFQlt <ChQ’ |FQI|| <CZ C_)’
IJFQ|U,00,Q < CShQ'; |Jp5' lO.oo.Q < CJh
3

(2.1)




FiG. 2.1. Reference square

~

V) g U3
Y3 Q T
U1 Y4 V2

where Jr, is the Jacobian of Fg, J,_-al is the Jacobian of F;', and

1Pali g = sup I D' Folé, mllz(ze 22)-
fir<r
Similar assumptions are made about F;. We do not need to assume anything about h, ur
hy, they are simply numbers proportional to the diameter of K.

Let 2 C R? be a cu:vilinear polygon, that is, a domain which is bounded by a simple
curve consisting of a finite number of smooth arcs with the end points at the vertices of (2.
Further, let X be a decomposition of ) into a finite number of curvilinear quadrilaterals or
triangles such that

a) = |J K, and for all decompositions under consideration the constants C, in (2.1)

Kek
are the same, that is the mappings are uniformly bounded.

b) The intersection K, K;, i # j is either a common vertex or common side, or the
intersection is empty.

c) If K,NK; = 7, 7, being the common side, then the mappings Fi' and Fy|
coincide on «; ; in the usual sense of the finite element method.

d) The vertices of §} coincide with the vertices of some K.

In this paper C denotes a generic constant which does not depend on p or any of the
functions involved, but which may take different values in different places, even in the same
formula. .
Let us now define the finite element spaces on § and 7. By 'P,f(Q), p > 1, we denote
the set of all polynomials on Q which are of degree at most p separately in the variables ¢

s
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FI1G. 2.2. Reference triangle

and 7. This space is usually called the space of tensor product polynomials. By 'P,?(Q), we
Jdenote the span of the union of set of all polynomials of (total) degree at most < p with the
polynomials which are of degree at most p in £, degree 1 in 77 and of degree 1 in ¢, degree
at most p in 1. This space coincides with the space of the serendipity element [24]. The

space P2(Q) is the minimal space which includes all polynomials of (total) degree p and has
Fasis functines which can he facto-iz~ ! irfn nods! <ide and interns! chape funetinns, Thig

guarantees good approximation properties. In 3], the set 'P,f(Q) is denoted by ¢, and the

set 'PI,’\Q) by Q- By 'P;,(T) we denote the set of all polynomials of (total) degree at most
p, and, for an interval I, P,(I) is the set of all polynomials of degree at most p on I. The
generic notation V,{ K) will be used for 'P;,(K)

We shall assume that the basis (shape) functions of V,(K) can be divided into the
following three sets:

a) The set T of internal shape functions. These shape functions are zero on oK.

b) Thesets I',, 2 = 1,...,n (n = 3 for K=Tandn=4for K = Q) of side shape
functions. If 4, is a side of K then a side shape function associated with 4; is zero
on 8K \ 4. T is the set of all side shape functions associated with 4;.

c) The sets AV;, 1 = 1,...,n of the nodal shape functions. For a scalar problem, the
set A, contains one shape function which has value one at v, and is zero on the
opposite side(s).

The spans of I, I', , N, will be denoted by I, T, N.. The above definition does not imply
a unique set of shape functions. There are many different ways to create shape functions
satisfying the above conditions and spanning the same space. We refer to (3, 17] for details.
Let M C R? be a domain. Then by H*(M), k > 0 an integer, we denote the standard
Sobolev space on M, and by || - |lk.ar (resp. |- [kar) the norm (resp. seminorm). On

5




I = (a,b) we also introduce the Sobolev space with fractional index by interpolation by
the K-method [6], H'/2(I) = (H"(I),H'(I)),/2 with the norm || - |[i/2.; and the space

H)? = (H'(I), H)(I))1/» with the norm || - 12, Further, by H'/?(8K) we denote the
space of all traces of v € H'(K) and ||u||i/2.0x = inf ||v||; xk where the infimum is taken over

all v € H'(K) for which v = u on K. We have
\ 2

nuuum(//( ) vl dndy|

and

u”u”1/21~ |u||1/2l+2/ d +2/ d:r: - |u|[l/2,+/($ a,)\:: —b

wlierc = denotes the usual equivalence of norms. Let v; be the sides of K, ¢ = 1,2,3 (resp.
i =1,2,3,4) and v, be the vertices of K such that v, is common for 7;(,) and ;. Then it
is well known that

ut()( ))zdt

1
o o e ui(t
YD M FNEDS /
=1 ]

=1 0

where the u;(7) denote the restriction of u to v,(z) and t is the distance to v,. It is also well

known that if u € H'/2(8K) then there exists U € H'(K) such that

"'L_ ul’l‘\l\) I .”;(_)._,“.\.

In this paper we shall be interested in the following model problem: Find u such that

(2.2) —Au=finQ, u=0o0nd'Q, g—u-fgonaﬂ

with 8'QU 0 = 90. We shall assume that 8'Q2 # 0 and J'Q) and 0*Q consist of entire
sides of 8. Note that the assumption that 3'§2 # 0 is only for the sake of simplicity and is
not essential.

We shall understand problem (2.2) in the usual weak form. To this end let

H={uec H(Q):u=00n8'Q}
and

a(u,v) = ‘/r Vu- Vvdzdy,

be the bilinear form defined on H x H. Further let

/f,vdzdy+ / favds

an
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be a bounded linear functional on H. Then by the weak solution of (2.2) we mean u, such
that

(2.3) uy € 1 :  aluo,v) =g(v) Vv e H.

The solution u, exists and is unique.
The finite element solution is defined in the usual way. Let X be the partition of 2 and

Vi ={ue H: ulgoFreV,(K), KekK}.
Then the finite element solution is a function u; g such that
(2.4) urg € Vi @ a(upg,v) = g(v), Yve Vx.

The solution of (2.4) exists and is unique. By integration over the elements we have

(2.5) a(u,v) = 3 ax(u’,v¥), ak(u,v) z’/ Vuk V¥ dz dy.
K

Kek

where uX = u|, and v* = v|, are the restrictions of u and v to K. Note that the bilinear
forms ax(u,v) are positive semidefinite.
For any K, € K we also have

aK(uvv) = dK(ﬁK':{)K)

) : - . . . . 7. .- v e R . ~ N
where u'° o2 v oo fe & VIRY. ©0 - »7 o Fyo o0 VA ;. and ax is defined on the master
I 7 : . 2y I ]

element K.
The form ak is different for every K € K but

ar (", 4%) = a(a”,u"),
where
(2.6) a(ak, i) = [ |V Pdndg
K

and because of (2.1) the equivalence constants are independent of K,. Hence we do not need,
at least for.our purposes, to distinguish between the bilinear forms ax and é@. Further, we
do not need to make any distinction between the basis (shape) functions on K and K,orin
general between K and K.

3. Preconditioning by Linear Elements. For any u € Vi and K £ K we have the
decomposition

n

(3.1) uk :Zuﬁ.%—Zuf,%-uiK
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where uh = uly, ult € N, uk € r,, uf € I, and n = 4 for the rectangle, n = 3 for

the triangle. (As menhoned in section 2 we do not distinguish between X and K). The
partition (3.1) is unique. Define

(3.2) c(u,v) = Z cK(uK,vK),

Kex

where
n

(3.3) cw (u¥,0%) = an (Z Uy va{,) + 2 ak(ug,vg,) + ar(uf,v{0).
J=1

j:[ j:l

The main goal of this section is to analyze the spectral equivalence of the forms c¢(u,v) and

a(u,v).
LEMMA 3.1. If
m,aK(uK,uK) < cK(uK,uK) < mgaK(uK,uK) VK € K vu¥ e V.(K),
where m, and m, are independent of K € K and u, then

mia(u,u) < c(u,u) < mra(u,u), YuelV.

Proof. Sum over all elements K € X. 0
The following lemma shows that to bound the condition number, it is enough to bound
the energy of the terms of the decomposition (3.1).

LeMMA 5.2 Forany u™ o 4 ,(A) et
(3.4) |Zu5,:x<bl|u Ik
j=t
(35) l & Hk<b'luk—i’fK1j:17"'vns
(2 8) uf 12 e <bsluf PP, 7=1,...,n.

Then it holds that

(3.7} myap(nf uFY < e (uf,uf) < maak (uf,u)

with my/my < (n + 2)(by + nby + by).
Proof. We have from the Cauchy-Schwarz inequality

aw(u ) = (L, + o +ull o+ Ll + i)

=1 =1 =1

n n - n
< ( ( Koo ul) + 3 ool uf) + an(uf )

=1

[\/}a




so m; > 1/(n +2). Further, using (3.4)-(3.6), we obtain cx(u®,u) < (b +nby +by)lu” |} .
a

Let us now b~vnd the asymptotic behavior as p — oc of the constants b, for some
particular case: ~i the decomposition (3 1) gener. ‘ed by specific spaces of shape functions.

LEMM - 5.3, Let V,(K) = PYT) or P; 2(Q), N, be the set of linear functions when

g

K = T and bilinear when K = Q and forall: =1,...,n
(3.8) a(u,v) =0 VYuel,»el,
where @ 15 defined by (2.6). Then (3.4)-(3.6) hold with

b, < C(1 + log’ p),

where C 1s independent of p.

Proof. Let u € V,,(K) and 2 = u+ A, A € R. Then U0, @v; = (Z]. uv,) + A
and s, = us,, %; = uj. Because the seminorm |- |; xk and the norm in the factorspace
H'(K)/P,(K) are equivalent, we may assume that

lull, & < Clul, &
Because |ul|;/2~, < Cllull, «, applying Theorem 6.2 we obtain
(3.9) luv, I} 4 < C(1 +logp)lul; -
Thus we obtain b, < C(1 + logp; and we have for uy = v - 3_7_, uy ; that
By o s G+ log plyui e

and using Theorem 6.2 once more we obtain

HUl”im“,K) < C(1 + log p)llwi]l] -
Hence by Theorem 6.6,

ollwdll} o5 < C(1 + log? P)Hqu_k

for all ~sides ¥,. By Theorem 7.4 if K = T and by Theorem 7.5 if K = Q there exists
us, €I + I such that Uy, = u; on ¥, and

”ubjnl K < CU”’“”?/Z.#J < C(l + log2 p)lu"f';('
From condition (3.8) we conclude that there also exists us ; € T, such that
lleaslly & < Cl1 + 108 p)lu, 4|

and us, = u; on ¥,. Therefore we obtain b, < C(1+ log? v) . Obviously uj = u), — Y7, us,,
and hence by < C(1 + log? p) as well. O
9




LEMMA 3.4. Let V,(K) = "PP‘(Q) and let all other assumptions of Lemma 3.3 hold.
Then (3.4)-(3.6) hold with b, < Cp*(1 + log® p).

Proof. The proof ic analogous to that above using Theorem 7.6 instead of Theorem 7.5.
0

We are now ready for the main result of this section.
THEOREM 3.5. Let the assumptions of Lemmas 3.3 and 3.4 hold. Then

mia(u,u) < c(u,u) < moa(u,u)

holds for any u € Vi with

(3.10) my/m; < C(1 + log? p)
if V,(K) = PUT) or V,(K) = PXQ), K € K and
(3.11) my/my < Cp*(1 + log’ p)

if Vi(K) &€ PYQ) for some K € K. The constanis C in (3.10) and (3.11) are independent
of p and K, and the bound (3.10) cannot be asymptotically improved.

Proof. Combining Lemmas 3.1 - 3.4, we obtain (3.10) and (3.11). To show that the
bound (3.10) cannot be asymptotically improved, we take the function function v from the
second part of the proof of Theorem 6.2, map it on each side of K and extend to a function
u with minimal energy in V,(K). Then

fu‘f,l{ ~ lOg p,

but it holds for the side components that

Z 'usk:J,I.K ~ 0”””?/2,((1,14 ~ log” p.
3=1
Conscquently, m; > (1/C)log? p; but it is easy to see that m; < 1. O
Realizing that the energy of the nodal components was bounded by a C log p, the above
proof also shows that the growth of the condition number as p — oo is in this case primarily
due to the coupling between adjacent sides (and not, for example, between the nodal and
side shape functions).
Let us note that we conjecture that (3.11) is too pessimistic, and that in fact the result
should be the same as (3.10). This conjecture is supported by numerical experiments.
The solution operator for the problem

(3.12) v € Vi: clu,v)=g(v), Yve Vg

serves now as the preconditioner. It is easy to see that problem (3.12) has a unique solution,
since c(u,u) is symmetric and positive definite.

Using this preconditioner we can apply the conjugate gradient method. One such
modified preconditioner, which is very natural for exsting p-version finite element programs
such as PROBE (20}, will be studied in the next section. Problem (3.12) is obviously much
more easily solved than the original problem and the procedure is highly parallelizable.

10




4. Implementational Aspect and Numerical Experiments. Theorem 3.5 is the
basis for various versions of the preconditioned conjugate gradient raethod which can he
asymptotically equivalent yet different in practical performance. For various aspects we
refer to [2, 1, 3, 14, 17, 16, 23]. The method has the tollowing essential steps:

a) Construction of the standard set of shape functions, 1.e., the sets N, [',, . Here
various practical considerations play an important role, for example the hierarchical
character of the functions. For the discussion of the design of N, I',, and Z, we
refer to [3].

b) Transformation of the sets I, of the shape tunctions to a new set I'! which satisfies
(3.8), while preserving the span of all basis functions. This transformation can
be based on the standard form a(a,9%) (and hence made only once on the
reference element) or on the actual form ax(2X,v*) made separately (in parallel)
on every element. The transformation can be made by elimination (condensation)
of the internal shape furctions and in the latter case decreases the size of the
global stiffness matrix on which we iterate. The transformed shape functions are
scaled (normalized) and also orthonormalized in I';. Then the stiffness matrix
corresponding to the preconditioning form ¢(u,v) is diagonal except for a diagonal
block corresponding to p = 1, and the iterations are very simple. It 1s also possible
to choose basis functions on the reference element so that this transformation can
be avoided, see [17]. For high p the transformation is relatively expensive when the
actual form a(u,v) is used but is fully parallel on the element level. Furthermore,
the transformation approach is natural for an existing p-version finite element code
such as PROBE. :

c) borp =1 preconuiiioning and conjugale gradient iteration eithier the giobal stiifness
matrix can be assembled or the iterations can be made using local stiffness matrices.
The p = 1 pr.condition:ing is relatively inexpensive for higher p.

Various other aspects play an important role in the practical performance of the
algorithm. We shall not enter into details here but shall display a numerical example based
on one of the versions of the method and implemented on Alli»1t FX/8°. Let us consider
problem (2.2) on §2 = (—-1,1) x (—1,1) with the partition K into n x n identical squares.
We shall further assume that 9°Q — 9. The global stiffness matrix is then singular with a
simple zero eigenvalue and a constant eigenfunction.

Let us first consider the case where the set P)(Q) is used on every element of the
partition. This set is used in the program PROBE [5, 20].

1} The one element sets N, of nodal functions, each consisting of the the usual bilinear

function N,, defined by A

Ni(m) = (1 - (1 - ),

Nalg,m) = 301+ 61 =),

® Computetional support was provided by the Advanced Computing Research Facility at the Argonne
National Laboratory.
11




Ny} = 301+ €)1 + ),

N\(€m) = 3(1- €)1 +7).

2) The sets I', of the side shape functions. There are p ~ 1 shape functions associated
with every side v,,1 = 1,2,3,4. These are defined as

N, ) = %(1 —9)®(é), i=1,2,...,p -1,

NP(¢,m) = %(1 +8)®(n), 1=1,2,...,p -1,

M = S e, =120,
Mg = - pem, =120,
where
2% -1
2.(6) = /=5 /;Pi(t)dt

and P;(t) is the Legendre polynomial of degree j. The term (—1)' is needed in NP
and N,m to obtain invariance with respect to rotation of coordinates.
3) The set I of the internal shape functions. For p > 4 there are (p — 2)(p — 3)/2

internal shape functions defined as

(4.1) Ni(&m) = (1~ €)1 —n’)P(E)Pi(n), 0 (i+5)<p— 4

For example, if p = 8 there are 47 shape functions, consisting of 4 nodal, 28 side and 15
internal shape functions.

This set of shape functions is hierarchical, which is important in practical considerations.
In the case of the set P/(Q) the set T is expanded so that it contains the functions from
(4.1) for all 2.7, 0 < ¢,7 < p — 2. See [2, 3] for details.

In our numerical experiment, we use the following approach:

1) Using the above shape functions we create the local stiffness matrix. We shall
simulate the general case where the local stiffness ma..ices are different and compute
them separately in parallel. We further consider two variants:

a) Preconditioning by elimination of internal shape functions and diagonal scaling
of the resulting reduced mg,trix. Because this reduced matrix is in fact the
stifiness matrix with original nodal functions and new side shape functions
satisfying (3.8), this corresponds to the preconditioner (3.3) with form a in the
second term replaced by the form corresponding to the diagonal of the reduced
matrix. To implement (3.3) completely, one can orthogonalize the new side
shape functions in the energy inner product, but the condition number would
be further reduced only slightly (3, 16].
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Number of iterations to reduce the error in the energy norm by factor of 10~ for n = 2 (§ elements).

TABLE 4.1

Set Q) Set P2(Q)

Preconditioning Preconditioning

p | by climination | - ation | DY Slimination |y ) mination
of internal of internal :

shape functions shape functions
2 12 16 8 8
4 17 31 13 19
6 20 41 .6 26
8 22 51 18 32
10 24 59 19 39
12 26 66 20 45
14 27 74 21 50
16 29 79 22 54

b) No elimination is made, the interior shape functions are scaled to obtain ones
on the diagonal. This corresponds to the definition of the decomposition from
original shape functions, and using the diagonal forms obtained from these
shape functions to replace a in (3.3) for sides and interiors.

2) The conjugate gradient method is used with preconditioning (3.3) without
assembling the global stiffness matrix. Except for the solution of the problem with
p = 1 in every iteration, all computations are performed element by element. To
measure the convergence, we shall only consider the case with zero exact solution
and narzero random starting vectnr. We have run our tests for the case 3'Q0 = 0,
which leads to singuiar stiffness matrix with constant eigenfuction. The process
was thus adapted by including orthogonal projections onto the complement of
the nullspace. Direct solution of the problem for p = 1 was done by band LU
decomposition and elimination of internal basis functions by full matrix Choleski
decomposition. The modified side shape functions have not been orthogonalized.
Table 4.1 shows the number of iterations required to reduce the original error (measured
in the energy norm) by a factor of 107*. We consider the case n = 2 (i.e. 4 elements). The
results of the previous section indicate that the number of iterations should grow at most
as logp in the case of the set 'P,f(Q) and at most as plogp for the case 'PS(Q), with the
conjecture that the growth is only log p. In Fig. 4.1, we show the relation between p and the
number of iterations in semilog scale. We see that the case 'P,,’(Q) needs fewer iterations than
'P;(Q), although the proof is still open. In both cases the growth is log p for p in practical
ranges. (The growth logp would lead to a straight line in Figure 4.1). Fig. 4.2 shows, in
loglog scale, the growth of the number of iterations in the case when no preconditioning
by elimination is made. We see that the number of iterations grows about as p*2. This is
related to the growth of the condition number of the local stiffness matrix as O(p?).
To compare the practical potential of both varians, we have to realize that the
number of iterations is not solely essential for the effectiveness of the method, because
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Timing in seconds on Alliant FX/8 using 4§ processors for n = 2 ({ elemenls)

TABLE 4.2

Set PZ(Q) Set P>(Q)
Preconditioning Preconditioning
p byoilil:::;:f n No elimination byozl;::::;:lon No elimination
shape functions shape functions
0.465 0.576 0.294 0.293
2 0.018 0.011 0.010 0.010
0.433 0.548 0.270 0.267
0.673 1.150 0.463 0.671
4 0.051 0.040 0.020 0.019
0.610 1.098 0.436 0.639
0.969 1.791 0.743 1.131
6 0.248 0.127 0.063 0.052
0.781 1.651 0.633 1.062
1.762 3.186 0.852 1.403
8 0.946 0.327 0.206 0.116
0.805 2.345 0.663 1.274
3.976 6.237 1.280 2.142
10 2.857 0.729 0.556 0.249
1.092 5.483 0.709 1.879
9.263 12.498 2.173 3.344
12 7.353 1.420 1.328 0.468
1.864 11.032 0.829 2.856
20.368 24.498 3.971 5.500
14 17.088 2.535 2.866 0.820
3.200 21.875 1.078 4.655
41.082 42.245 7.250 9.062
16 35.516 4.201 5.679 1.346
5.414 37.893 1.534 7.676
Total time
Legend: Local stiffness time
Conjugate gradients time
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Number of iterations and timing in seconds on Alliant with 8 processors for the set 'P,,'(Q)

TaABLE 4.3

p n=4 n=>5 n==6 n=17 n=28 n=10
10 11 10 10 10 10
2 0.313 0.473 0.455 0.659 0.560 0.754
0.032 0.035 0.125 0.252 0.040 0.146
0.263 0.401 0.298 0.368 0.471 0.531
14 14 14 14 14 14
4 0.458 0.634 0.726 0.972 0.990 1.289
0.042 0.071 0.198 0.322 0.158 0.307
0.399 0.537 0.498 0.613 0.753 0.896
16 16 16 16 16 16
6 0.643 0.953 1.112 1.532 1.614 2.625
0.133 0.255 0.334 0.504 0.506 0.844
0.491 0.666 0.698 0.924 1.049 1.662
17 17 17 17 17 17
8 1.224 1.740 2.192 2.844 3.211 5.110
0.429 0.824 1.106 1.538 1.650 2.732
0.769 0.877 1.044 1.260 1.486 2.265
19 19 19 19 19 19
10 2.191 3.740 4.781 6.592 7.589 11.664
1.138 2.268 2913 4.064 4.573 7.412
1.027 1.431 1.826 2.468 2.933 4.140
21 21 21 21 20 20
12 4.536 8.406 10.788 15.431 17.701 28.187
2.747 5.433 6.876 9.653 10.930 17.742
1.746 2.895 3.832 5.693 6.632 . 10.286
22 22 22 22 22 22
14 10.036 17.871 22.824 31.812 39.008 61.259
5.998 11.854 14.872 20.779 23.669 38.391
3.913 5.845 7.702 ~10.710 14.857 22.123
23 23 23 24 23 23
16 18.902 34.623 44.622 61.470 74.892 120.481
11.931 23.746 29.920 41.750 47.458 77.899
6.761 10.545 14.232 19.135 26.547 41.193
Number of iterations
Legend: Total time

Local stiffness time
Conjugate gradient time
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F1G. 4.1. Number of ilerations ufter elimination of interior

30 T T T T T T 7 T T T T T T T T 7T

25+

Iterations

15
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10° 10! ‘ 102

Degree of Elements

Full line is the number of iterations for the space P2, dashed line for the space P;.

the preconditioning by elimination of interior is expensive. In the table 4.2 we show the
timing on Alliant FX/8 with 4 processors (i.e., one per element). We report

a) the total time,

b) the time for the local stiffness matrix computations, elimination and scaling,

c) the time for the conjugate gradient method.

From table 4.2, we clearly see the timing of the main parts of the computation. In
the case where no elimination is made, the local stiffness matrix time consists only of the
matrix construction and scaling, while in the case of elimination it also includes the time
for elimination which, for high p, is the main part of the total time. Comparing these times
we see that the construction of the local stiffness matrix is not overly expensive. Further
we see that the use of the set 'P;(Q) is clearly superior to that of 'Pg(Q) The set 'P:(Q)
will be more accurate than P}(Q) for the same p, but PZ(Q) has more basis functions and a
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F1G. 4.2. Number of ilerations without elimination of interior

102

LI

[ T B I Y

101+

Iterations

~
[

T
1

100 1 I i RS WS A T T i i IR TR S R S 1

100 10! 102
Degree of Elements

Full line is the number of iterations for the space 7-”?, dashed line for the space 7-’,';’.

greater increase in accuracy will be obtained by increasing p in PS(Q) (For example p = 11
for ’P,f(Q) is comparable with p = 16 for ’P;’(Q))

So far we have presented the data for the case n = 2 (i.e. 4 elements). Table 4.3 reports
the number of iterations as functions of p and n for the set 'P'}(Q) and the timing as in table
4.2. We see that the number of iterations is independent of n and the growth with p is the
same as in table 4.1. We report here condensed data only; for a detailed breakdown of the
timing and an exact description of the tests, we refer to [2, 23]. Here we mention only that
the total time does not equal to the sum of local stiffness time and CG time. This difference
includes the time for the LU decomposition for p = 1 as well as various communications and
bookkeeping operations. Note in Table 4.3 that the local stiffness time for large p is almost
proportional to the number of elements (see, e.g. p = 16, n = 4,8), while for low p other
factors prevail. Because in our model problem the local stiffness matrices are identical, we
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could compute the local stiffness matrices only once by each processor. The local stiffness
time would then decrease by the factor n?/8. The LU decomposition for p = 1 is of order
3% of the total time for high p and 10% of total time for low p. Finally, we mention that
for p = 16 and n = 10, the size of the global stifiness matrix (number of degrees of freedom)
was 12521.

We conclude this section with several remarks based on detailed computational results
as reported in [23]. The method is well parallelizable and the observed speedup is very
high. However, the speedup is different for various parts of the procedure. The local
stifiness matrix computaiion is comnpletely independent and thus the speedup is more than
95%. The conjugate gradient iterations, although parallelizable element by element, require
considerable communication between elements and thus the speedup is smaller. The entire
computation has speedup of order at least 85%, depending on the number of elements and
the degree p.

We expect that that the speed up will be essentially the same for parallel computers
with distributed memory because of good load balancing. The stated timings also allow
us to roughly estimate the times for other variations of the approach, assuming that the
same number of iterations are required. The stopping criterion 10~* is realistic because
the discretization error, measured in the energy norm, is, in practice, larger than 1% and
hence an additional error of 0.01% is fully acceptable. The reporicd times are for elemeuts
which are not distorted. We can expect that strong distortion of the elements will strongly
influence the number of iterations required; see Mandel [17, 16] for related condition numbers
in three dimensions and curved elements.

There are many other obvious versions and variations of the implementation. We have
shown one possibility, which can be easily implemented as a part of an existing p-version
code.

5. Preconditioning by an Auxiliary System. The method of Section 3 cannot be
applied successfully to three-dimensional problems because the values of [[u¥ [/, x cannot be
bounded by a power of log p times ||u|| x independently of v as p — co. We shall introduce
another preconditioning system which has been successfully applied in three dimensions, see
Mandel {17]. We shall analyze the analogous two dimensional procedure. In order to analyze
the three-dimensional procedure, we would need the appropriate extension theorems in three
dimensions; the proof is then completely analogous. The method we obtain is related to
that of Bramble, Pasciak, and Schatz [7] for the h-version.

For u € Vx and K € K we write as before in (3.1),

n n
(5.1 = Sl 4 T o,
=1 =1

where uf', € /\7,, uf', € f‘,, and "iK € I. The definitions of the spaces N, f‘,', and 7 will be
different here. In Section 3, it was essential that the span of A, ¢ = 1,...,n, contains the
constant functions. This is no longer required here; instead, we take care of the constant
component separately. To this end, let A be the space of functions which are constant on
18




each K € K. Then on (Vi x A) x (Vi x A), we define the form

d(u, Ajv,p) = 3 dic(w, ARG 05, u5),
KekK

where
dic (uf N 05 u Y = di(uh — AK o — k),

and

n n
k(u,v) = Z "'K(ui(‘j’vf,j) + Z aK(uf,jv”:,,j) + ax (uf ,vf).
1=1 1=1
The solution operator for the problem

(5.2) veV: du, v,p)=g(v), YveVy, peA

will now, analogously to (3.8), define the preconditioner (using u only). Existence of the
solution operator follows easily from the observation that d(x, A; 4, A) > 0 with equality only
if u=0and A = 0. The system (5.2) obviously splits into

(5.3) di (uf -2, 1) =0

and

(5.4) 3 dj (u¥ — MK v¥) = g(v), Ywe W
Kek '

See [17] for more details about the solution of (5.3) and (5.4). Now we have, analogously to

Lemma 3.1,
LEMMA 5.1. If

myak(u®,uX) < di(uf, A0 (W) AK(WF)) < maa(u®,u’)
where AX(uK) is defined by (5.3) and m; and m; are independent of K € K and u, then
mya(u,u) < d(u, A(u);u, AM(u)) < maa(u,u).

Further we have
LEMMA 5.2. Assume that for any uX € Vi such that [ uKdzdy = 0, it holds that
K

(5.5) luf,jﬁ,K < b,IuK f,Ka |uf,,' :{.K < b2|uK ?,Ka |uiK f,K < b;,|u’(|f',(.
Then
(5.6) myag(uf,uf) < dy(u¥, ,\(uK); 2K, A(x")) < maax(u,uX)
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holds for all ux € Vk with ma/m, < (2n + 1)(nby + nby + by).
Proof. The proof is the same as for Lemma 3.2 observing that for any A,

ar(uf = A uf - A) = ap(uf,u”)

and using the fact that all the terms in (5.6) are invariant with respect to the addition of a

constant to u.
Let us now determine the constants b, for some particular choices of the shape functions.

LEMMA 5.3. Let
3) V() = PAT) or PAQ)
b) Foranyu € N,, 1= 1,...,n, and all sides 4, adjacent to the verter v;,

(5.7) a(u,v)=0  YveIUT,,
c) Fori=1,...,n,
(5.8) a(u,v)=0 Vuerl, Ywel
Then (5.5) holds with
b, < C(1 +log’p), 1 = 1,2,3,

where C 1s independent of p.
Proof. First consider the case when K = T is the reference triangle with the vertices

U,,t = 1,2,3 and sides 4;,t = 1,2, 3 opposite to v, (see Fig 2.2). Letu € V,,(K), Judédny =0;
K
then

lull, x < Clul, &

By Theorem 7.7 and the trace theorem, there exists a function f, € Vp(f() such that f, = u )
on 4, and f, = 0 at 9,. Then @y, = u — f, is zero at ¥, and u(v,}) = %v,(v:). Then from (5.7)
we have |uf |, o < |v.|, 4 and hence

(59) luv,ill'[( < Clu'l,kw
giving b; < C.

Now for uy = v — ¥7_, uy,,, we have ||u,||, 4 < Cllu|l, 4, and using Theorem 6.5, we
get

U”uluf/gn‘,i <C(1+ 1052 p)”uiﬁk

The rest of the proof for this case is analogous to that of Lemma 3.3.
Let us now consider the case K = @ and the vertex 9, (see Figure 2.1). By Corollary 6.3
and Theorem 7.9, there is a function v € P? such that vl;, = vl5, = 0, v(¥:) = u(dy), and

loll, k < Cliull &
20
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Now we may conclude using (5.7) that

“uv'l”n,k < C”"’”!.K

and hence b, < C in (5.5). The above estimate obviously holds for uy,, 1 = 2,3,4 as well.

The proof of the estimate of b; and b3 goes exactly as in in the first case using extensions
by Theorem 7.5. O

We have the following bound for the tensor product space.

LEMMA 5.4. Let V,(Q) = PX(Q) and (5.7) and (5.8) hold. Then |b;| < Cp*(1+ log? p).

Proof. The proof is same as that of Lemma 5.6 for K = Q using the extension by
Theorem 7.6 rather than by Theorem 7.5. O

We are now ready for the main result of this section.

THEOREM 5.5. Let the assumptions of Lemmas 5.2 and 5.4 hold. Then

mya(u,u) < d(u, A(u);u, A(n)) < maa(u,u)
with
(5.10) ma/m, < C(1 + log® p)
f Vo(vk) = Py(rr) or Vo(vk) = Pi(1q) for all K € K and
(5.11) my/m, < Cp*(1 + log®p)

if V,(K) = ”PJ(Q) for some K € K. The constant C in (5.10) and (5.11) is independent of
p and K and the bound (5.10) cannot be asymptctically improved.

Proof. Combining Lemmas 5.1-5.4 we obtain (5.10) and (5.11). The proof that (5.10)
is sharp is same as in the proof of Theorem 3.5. O

We conjecture as in Section 3 that the estimate (5.11) is pessimistic and that it can be
in fact replaced by (5.10).

6. Polynomial Subspaces of H!/2. In this section, we give several results for spaces
of polynomials on a segment, which are of interest in themselves. First we prove a discrete
Sobolev inequality for the H'/? norm, bounding the pointwise value of & polynomial in
terms of its H'/? norms. Then we bound the H&{z norm of a polynomial which is zero on
the endpoints in terms of its H'/? norm. In what follows we have K = Q or K = T, but we
use the coordinates z,y instead of £, 7.

We begin with a lemma which will allow us to consider trigonometric polynomials instead .
of algebraic ones. Let I = (—1,+1) and I* = (0,r).

LEMMA 6.1. Define the mapping ¥ by

(6.1) w€ H'*(I)—~ Yu=v, v(p)=rulcosyp), pel.
Then ¥ ts a linear homeomorphism between H'/*(I) and HY/*(I*).
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Ifu € P,(I) and v = ¥(u), then

(6.2) v(p) = > bicosky
k=
and
(6.3) “U”f/z,l- = Z bi(k +1).
k=0

Proof. Define

N=1rI x1,
:(p,0) = (2,y), = +iy = coslp + (),
Z = 3(Q).

Because the cosine is a conformal mapping, the Cauchy-Riemann conditions hold,
zﬁp’«' = y(’ 1"( = -y‘r"’
and we have the Jacobian of &,
J=zL+y #0, Y(p.()eq,

because — sin(yp +1() = cos’(¢ +i() = z, +1y. # 0 for all (p,() € 1. Now let u be a smooth
function defined on Z. Define

¥(u) = v(p, () = w(®(¥,())-
Then v is defined on 2. From the chain rule and Cauchy-Riemann conditions,
Uy = UsTy + UyY,, V¢ = UsT( F UyY( = —ULY, T Uy T,
and by a simple computation,
vi + vg = (ul 4 ui)(:nz, + yf,) =(ul+ uz)J.
By substitution,
fuft ;= [tud i wt)dady = [(u2 + )T dpd( = [(v3+ v} dpdC = ol g
Z 0 h
Finally, from

wfy = [ufdzdy = [ Iof?J dpd¢
z 183
22




and the equivalence of norms

1/2
“ZHf.n ~ (lzﬁ.sz + /w[z(g d‘PdC) ) z € H'(Q),
)
which holds for any function w € L™(f) such that w > 0 and [, wdpd{ > 0, it follows that

(64) S1¥lha < ullz < CIEEa,

with C independent on u. By continuity, (6.4) holds for all v € H'(Z).
Now if u € H!/?(I), we may extend u to u € H'(Z) so that |jul}, z < Cllulj\/2.1, and it
follows from (6.4) and the trace theorem that

1¥()ly2ae < CNE(u)llia < Cllulliz < Clleftizr.

The inverse inequality follows similarly using ¥ ' in place of ¥.

To prove (6.2), it is sufficient to note that we have cos” ¢ = Y 7_,, ax cos ny for suitable
ax. Equation (6.3) follows by direct evaluation of Sobolev norms of a Fourier series and by
interpolation. 0

The following theorem is a discrete Sobolev inequality for polynomial spaces.

THEOREM 6.2. Let I = (—1,+1), u € Py([), and z € I. Then

lu(z)] < C(1 + log"? pMllullijr,

with C independent on p, u, and z.
This estimate cannot be asymptotically improved, t.e., there 1s a constant C such that
for each p > 2 there ezists u, € P,(I) such that x|,/ < C and |u,(—1)| > log'/?p.
Proof. By Lemma 6.1, we can consider instead the case v € H'/?(I"),

and Y € [*, 2 = cosy. Then by the Cauchy-Schwarz inequality,

P r 1

v - arl = a e __ -

| ('/))'sz;”l k] kz:%' kl(k + 1) (k+l)'/2
P 1/2 ; p 1 1/2

< (Z lael?(k + I)) <Z m) < Cllvllij2.1-(1 + log'/? p).
k=0 k=0

To show optimality of the estimate, it is enough to choose ay = (k + 1) 'and z = -1. O
CoROLLARY 6.3. We have

(6.5) lull L =arxy < C(1 + log'? p)llullik, Yue€ PK),
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it = 1,2 or 3, where C does not depend on u.
The following lemma extends the results of Lemma 6.1 showing that the mapping ¥

i/2
preserves the subspace H(,({ .

LEMMA 6.4. Let ¥ be defined as in (6.1). Then u € H\ *(I) +f and only f
Y(u) € H(‘,({Q(I‘), and ¥ is a linear homeomorphism between H.',/,Z(I) and H))(I).
Proof. Let v = W¥(u). It suffices to use Lemma 6.1 and to note that we have for the

additional term in the H,:‘fz norm that

‘ J!u(cosnp)lq sin <C } v (el
[ 2~ |cos<p-1|( l go)dcp{ >1/C ;,/‘P(”—‘P)d%
since
sin @ <¢C ) 1
ot { e | sy w0
g

THEOREM 6.5. Let Z, be the space
Zp ={u € Py(I) | u(-1) = u(+1) = 0} .
Then for all p > 0,
(6.6) il < C(1 + log p)liviiyer, Ve € Zy,

with a constant C independent on p and u. The bound (6.6) cannot be asymptotically
improved, that s, for every p, there ezists a function v € Z, such that ,||vi|, 2.1/ W|vlli20 >

Clogp, C > 0 independently of p.
Proof. From Lemmas 6.1 and 6.4, it suffices to consider instead the case

P
) =) axcoskp, v(0)=0.
k=0

We use the fact that v(0) = 3°7_, ax = 0 and estimate by the Cauchy-Schwarz inequality,

), 11 2
————dcp:/— ar(coskp — 1) dyp
7[ ¥ ()(p\g
(1 " (coskp -1 1)*
S/—( a|2k+1)( )d(,a
@ z:lk( = k+1

0

cos ktp -1)?

< Cloll Z/ Ty e

But

x : kx
/Eﬂsﬁ":_l)fd‘p _ /(i’s_‘f’_“_lﬁdw < C(1 + logk),
p v

3] 0
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SO

lU(SP) log & 5
-dp < ) <
[y < e a3 425 < Clolie O +log?p),

0

The bound of the integral }l-'j'}%ﬁdcp when v(m) = 0 follows by the substitution of ¢ for
U

T — .
To show that the bound (6.6) is sharp, let

P
v(p) = Z ai cos kg
k=0
with

_ﬁ/kv }u<k§p
0, koddork=0.

where M = [,/p] (integer part) and 8 = O(1) is chosen so that 3} ,ax = 0, i.e
v(0) = v(w) = 0. Now expand v so that

{ 1/k, 25’°5M}keven
A =

= i by sinmep.

m=1
Since {[v][1/; .- = logp, it will suffice to show that

oC

1
0“"”?/2,(0,:) ~ Z mbl, > C log” p.

m=1

We have

0, m even,
— 2 2m
b =14 2 ¥ —S%mar, modd
2<k<p
k even

Then b, = (2/7)(b{!) — Bb(2)), where

2m 1 2m 1
)= 3 =, =¥ -
2kgk5/\l m? — k? k A!:lSkSp m? — k2 k

The function z — (—'"72:";—,—‘1 is decreasing on the interval (2,m/+/3), increasing on the intervals

(m/+/3,m) and (m, +00), and positive on (2,m). Hence,

2m 'm
bl > C( I e R )
2<k<[m/V3]-1 (m? — &)k m-;lgks)\[ (m? - k?2)k
k even even

(m/V3]-1 A
ZC( /— 2mdz N / : 2mdz 4 2m )

| i ae ) mate T (i (mt ) (m+ 1)
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Using the fact that

/‘ T 1 o
(m? —z)z  2m? &

we have by a simple computation that

5 > Clogm

m

Because b(?) < 0 for m < M, we may concludc that

b > CIB™ 050, 4<m<M
m
and thus
S mb>C Y °gm>mogp, C >0,
m=1 m=+4

for all sufficiently large p. O
The next theorem gives a different bound.
THEOREM 6.6. Let Z, be as in Theorem 6.5. Then for all p > 0,

UHU-”f/z,I < ||u||f/2,1 +C(1+ 1081’)”“”?,00(1)-

Proof. 1t is sufficient to bound the additional term in the H(l,({z norm. We have

1-1/p?

+ / ;ftz dt.

1

[ | 8

-1 1-

2
By Markov’s inequality, cf., [19],

o'y < CPllvllLeeay,
so |u(t)| < C(1 — t)p*||vl|L=(s) and we obtain

i

V(¢ 1 1-1/p?
i [ Q dthllszLm(,)( / (1--t)p'dt + / mdt

-1 -1/p?

<C ( + 2log 2p) ol Lenr)-

1
The analogous bound on [ %2]—(% dt follows by substitution. 0
|
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FiG. 7.1. Notation scheme for the triangle

= (0,0) ;! P, AP B =(1,0)

7. Polynomial Extensions from the Boundary. Let K = Tor K =0Q. If
f € HY%(8K), then there exists an extension F € H'(K) so that f = F on 8K and

HEll .k < Clifll2.0k-

The main result of this section is that if f is a polynomial of degree p on all sides of K,
then F can be chosen to be in P' t = 1,2 if K is a triangle or a :quare, respectively. Thls
extends previous results from Babuska and Suri [4].

Let us consider the triangle T = ABC as shown in Fig. 7.1. We denote

T =7|‘U7F=AP|UP132AB,
72 =7 U = AR, UPC =AC,
73:7:{;U‘73C=BP3UP30‘—"BC-

Let f € Py(v1). Then we define

(7.1) | FYz,y) = £(t) de.

The value of F| at a point (z,y) € T depends only on the values f along the segment
Q:Q2, Q1 = (= — %,0), Q: =(z+ :}5,0). We prove now the following lemma.
LEMMA 7.1. Let f € Pp(11) and F')N(z,y) be defined by (7.1). Then

(7.2) Fi'i(z,y) € PY(T),
27




) F{(z,0) = f(z)

(7.3

(74) IF o < Clifllyam

(7.5) IF s < Cllfllemps 0 <R <1,
(7.6) IF Merp < Cllfllene 0 <k <,
(7.7) IFM e < Cllflioa, 0<k<,
(7.8) IFNkne < Clifllorm 0< k<,

where the constant C s independent of p and f.
Proof. 1t is immediate that (7.3) holds. Let f(z) = z" with 0 < n < p integer. Then

caialle ) )

( +1 )P(z:,y)E'P(T)

Hence (7.2) holds.
To prove (7.4) we first extend f to a function defined on the entire z-axis R so that [18]

Nflli22 < Cllfllijzms

where we have used the same notation f to denote the extended function as well. Then by
(7.1), Fy(z,y) is well defined on the entire half plane Q = {{z,y) | y > 0}. For (z,y) €

we have

(7.9) Fi(z,9y= [ f(O)H(z - t,y) dt = (f % H(9))(=)
where

B, <o
(110 e = { B HEE

Let §(¢) represent the Fourier transform of the function g(z) in the z direction. Then by
(7.9)

(7.11) Fi(&y) = fIOHEY)
where
: L VB e L siney/vi)
(7.12) H(¢,y) = Wors? _y}/“ﬁe d:c—m t/v3
28
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Let Q = {(£,¥)|0 < y < 2} and calculate the H'(Q) norm of F(z,y). By Parseval’s equality,
we have using (7.11)

VE Mgy = I E gy = [ 1FPIER(E y)Pd¢ dy
Q

+f |f(e)12|-a"’—yf?(e,y)nzde dy+ 1P dt d.

Now letting z = y¢/+/3 we obtain by (7.12),
2 2%/V3

/lfl(f,y)lz dy = _l_ / \/gsinzzi{ < C

2m 22 [ T+

8]

Hence

(113)  [If©FIER(E v ddy < C / E11F() & < ClIfIE 20 < CIFI 2.

Q
Also

cosz  sin z)
y

g -
H(¢,y) = \/ﬁ'( 22
which is bounded at z = 0. Hence
2¢/V3

A [ (- W) sy

and
P o -
U/ I3, B €9 ¢y < Clel,
so that
(7.14) JIGERA (TR / ENFE)dE < £
Q

. The third term can be bounded analogously. Using (7.13)-(7.14),(7.4) follows. Inequalities
(7.7) and (7.8) follow immediately for ¥ = 0, k = 1 and hence by an interpolation argument
(see [6]), they hold for all 0 < k < 1.

We prove now (7.5). Let the variable z be used to represent both the distance from A
along 4, and the distance from A4 along 7y,. Denoting

(7.15) G(z) = —i—/f(t)dt
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it is readily seen that
(7.16) IE enp = 1G@)ks T =(0,1/2).
Using (9.9.1) of [12], p. 244 we obtain

(7.17) 1G(2)lo.r < Cll fllo.p-

Further, integrating (7.15) by parts we have

and hence

G'(2)= f(e) + = [ 10 ds — filz) = —— [z~ ) @yde + 1 [ Feyae.

Using (9.9.5) of [12], p. 245 with r = 2 we obtain

1 f / ’
= [e-0r®d|  <Clffor
5 0.1
and by (9.9.1) of [12] p. 244 we obtain
1 [, ,
|2 [roa| <cii.
T v u,f
Hence
(7.18) IG"(@)llo.r < Cllfllo.r-

Combining (7.17) and (7.18) we obtain (7.5) for £k = 0 and & = 1 and hence by the
interpolation argument (7.5) holds for all 0 < k < 1. The inequality (7.6) is essentially
the same as (7.5) and Lemma 7.1 is completely proven. 0O

Let now f = f, € Py(v), ¢ = 1,2,3. Then we denote by F'-U"](z,y) the polynomial
extension of f; into T, defined for i = 1 by (7.1) and for i = 2,3 by (7.1) after properly
rotating the coordinates. Obviously Lemma 7.1 is applicable for i = 1,2,3 when properly
interpreted through the rotation of the coordinates.

Let 4, and 5, be the two sides of T (see Fig. 7.1) with the common vertex A. In the
sequel, we will use norms of the form || - ||x,ux,, defined by [|u|i . ., = |lulli,, + luli,,
for k < 1/2 and for u continuous, k > 1/2 and

”u”f/&“/lu:fz ~ ”"’”f/zm + ”ullf/z,ﬁ

F(wi(t) — ua(t))?
+ 0/ t dt
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where u; is the restriction of u to 7;,7 = 1,2 and ¢ represents the distance from A along 7,
or v;. These definitions may be extended to the case of different sides of T in an obvious
way. The norm || - ||;/2.97 can be defined analogously.

We now prove

LEMMA 7.2. Let T be the triangle as in Fig. 7.1 and f be continuous and such that
fi = f‘T € Po(7i), 1 = 1,2 where by f'% we denote the restriction on f on v,. Then there

exists ®, € Pp(vi), t = 1,2 such that

(7.19) U=F* 4+ F* e pi(T),
(720) U= f:' on 7, 1= 1,2,
(7.21) W0l < 1z
(7-22) ”@i”km < ”f”krnu“/z , t=1,2, 0< k<1,
2
(7.23) 18100 < C(1fillee + 3 Iilloss )s 0 k<1
=1
2
(7:24) 1€2lleng < O(Ifellens + X Mfillons )y 0 k<1,
1=1

where C is constant independent of p and f.
Proof. Let ®, € Py(v;). Then as in Lemma 7.1 we define

Gi(z) = l/cp,.(t)dt, i=1,2.
z U
Condition (7.20) will be satisfied if

B,(2) + Ca(z) = B1(2) + -71; [#:t)ds = fi()
(7.25) s
@:(z) + Gi(2) = Ea(e) + / &,(t)dt = fo(z)

hold for all z € I = (0,1). Since f; € Py(I) it is easy to see that ®, € P,(I) satisfying (7.25)

exist. ®, are uniquely determined up to an additive constant ¢ = 1,2. We now define

Ui (z) = ®i(z) + D2(z), ¥alz).= ®i(z)— ®:(2),
(7.26) hi(z) = fi(z) + Fo(2), ha(2) = Fil2) - ()

we see that hy € H'/%(I),h, € 4H'Y*(I), and 4||h2lli/2.1 < || fll1/2.910v> Where we define

i
h(t))?
A = A+ [ PO
3]
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and
AH'AI) = {u e H'Y(I) | allwflijzn < +o0}.
Note that the space (H'!/2(I) is obtained by interpolation of L?(I) and the space
AH'(I) = {u € H'(I) | »(0) = 0}

as H'/*(I) = [L*(1), »H'(I)], - By (7.25) we have

(7.27) ¥i(z) + /I‘Ill(t)dt = hy(2),
(7.28) () - % / V() dt = ho(z).

Here ¥,(z) is unique, ¥(0) = 5—‘-2(9), while ¥,(z) is unique up to the additive constant K.
We first analyze (7.27). By differentiation we obtain

1 7 1
—— (¥ dt+ -9, =h,.
¥, ”ZU/ 1(t) t+z 1 !

Using (7.27) we obtain

Y h
(7.29) v+ 2 R+ —.
r T

The homogeneous solution of (7.29) is 1/z2. A particular solution can be found by using the
method of variation of constants. Hence, substituting ¥,(z) = L&) into (7.29) we obtain

T'(z) = h\2® + hz

from which
Lt 2h L7 h d
¥i(2) = [Bhi(e)de + — [thi()de
V) V]
Integrating by parts we obtain
(7.30) ¥, (z) = hi(z) - _/ th(t) dt.

the unique solution of (7.27). We show now that

(7.31) I¥ller < Cllrilles, 0< k<
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Let .
F(z) = /Ith.(t)dt - —j(x —t)hl(t)dt+zjh.(t)dt.
Then 0 O U
B Do),
where

G(e) = [z - () dt,  Q(r) = %/h,(t)dt.

Using (9.9.4) of {12], p. 245 with » = 2 and (9.9.1) of {12],p. 244 we obtain
1F(z)/2lor < 1G(2)/=llo.r + [1Qllar < Cllhslu.s
which yields (7.31) for k = 0. Next, differentiating (7.30) and integrating by parts we obtain

r h I
¥ =k : % /thl(t)dt -2 =k - 13 /tzh’l(t)dt.
0 0

T T

Let

x

F(z) = /ztzh’l(t)dt = /(z,- - t)zh’l(t)_qlf - zZ/IhQ(t)dt +2a:j th(t)dt.

0

We have then

Ho) -G8 Qo) + Ria),
where
6e) = [(e-oPW©& Q@) =1 [Hwa
and 0
R(z) = % /{th’,(t)dt.
This gives

WF(z)/2lo.r S NG(2)/2llo.r + 1Q(2)o « + 1 R(2)o.r-
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The first two terms can be bounded once more by C||h o, using (9.9.4) of [12], p. 245 with
r =3 and (9.9.1), v.244. Moreover,

R(z)= 2 (—](z — ORI () dt + ::/h’,(t)dt)

2
0

so that |Rlly; can also be bounded by ||h}||s;. This yields (7.31) for k = 1. By the
interpolation argument (see (12|} we obtain immediately (7.31). Let us consider now (7.28).
Differentiating it and using once more (7.28) we obtain

(7.32) W, =hy + —.
Integrating we obtain

(7.33) ¥(e) = hafe) - [t

x

which is the solution of (7.28) with ¥3(1) = ha(1). We wish to show now that
(7.34) 1¥2likr < Cafifafled, 0< k<1
Using (7.33) and (9.9.9) from [12], p. 245 with & = 0 we obtain

1 ®2llo.r < Cllhzllo.r-

Since h,(0) = 0, (7.32) yields
Y o ¥
W= b + ;/hz(t)dt
0

and by (9.9.1) of [12], p. 244 we obtain
N¥2llie < Callhalfir

An interpolation argument leads immediately to (7.34). Hence we have constructed solutions
of (7.27),(7.28) such that (7.31) and (7.34) hold. We note that for k£ = 1/2, we have from
(7.34) |¥2ll1/2.1 < Callhalli/2.s and 4ljha||1/2,; cannot be replaced by ||hz||1/2,;. Coming back
to (7.26), using k = 1/2 we see that for 1 = 1,2,

||‘1’n“1/2m < “f”l/ZmU*m

and applying Lemma 7.1 we obtain immediately (7.21) and also (7.22). Returning to (7.27),
(7.28) we see that with I* = (1/2,1),

1 dlkre < C(IRilless + Nhillo), = 1,2.
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Hence also

1@ llkse < C (Hfl-uk,,. +3 ||f,-||b,,) , i=1,2

i=

which immediately leads to (7.23), (7.24). O

The following lemma is taken from [5].

LEMMA 7.3. Let T be the triangle as before, f be continuous on 8T, f, = f3 = 0 and
ft € Po(11). Then there ezists a polynomial v € P)(T) such that

”””LTSCHfl”lms v=/f onv, v=0 on1v,7s,

where C is a constant independent of f and p.
THEOREM 7.4. Let T be the equilateral triangle shown in Fig. 7.1. f 13 continuous on
OT and f; = fly;, € Pp(m), 1 =1,2,3. Then there exists U € P,(t) such that U = f on 0T

and

WUl < Clifllijz0r

where the constant C is independent of p and f.
Proof. First we prove the theorem for the case when f = 0 on v, and 43 and hence
with f; = fl|,, we have o}|filli/24, < l|fll1/2.67- By Lemma 7.2 we construct ¢,,®; and

U, = FI*) 4 F[*]. Then U, € P,(T), U = f, on 7,3 = 1,2 and
(7.35) 1Ulir < Clfilliszmun < Clflliyzor
Denote by g; the trace of U, on v3. Then we have

ollgslli/20 < Cllfllij2.0r

by (7.35) and the trace theorem. Because of (7.24), {|®2{|; ;¢ < C||fli1/2,or and hence using
Lemma 7.1 we have also

(7.36) lgslling < Cllfllis20r

Let now analogously as before

[1) "
U, = K"+ F*,

so that

Ur € PUT), Us = gson 1, Uy =0on 7
and
(7.37) (U2l < Collgallijzm < Clifllijzor-
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Denote by gy] the trace of U; on ;. Then gy](A) = gg'i(C) = 0. Because of (7.36), applying
Lemma 7.1 and Lemma 7.2 analogously as before we conciude that

Hg-[z””l.n <C (”93”1,730‘ + HQJHI/?.n) < Cliflliszar

Now applying Lemma 7.3, there is U3 € P,(T) such that

(7.38) 1Usllir < Cllgs Nim < ClFllyj2or
and
Us; = g[2” on vz, Us = 0 on v, 73.
Let now
V=U -U,+Us.

Then it is easy to see that V € P (T), V = fy on v, V = 0 on 7:,73 and because of (7.35),
(7.37) and (7.38) we obtain

Wih.r < Clifll2.0r

which concludes the argument.
Secondly, now we will address the general case. By Lemma 7.2 we construct ®,,®,; and
U, = Fl[m] + Fi* Then U, € Py(T), Uy = fionv,u=1,2and

WUl < Clliflhzawrw < Cllflli2er

Denote by g3 the trace of U on v; and g3 = g3 — f3 on v3. Then

”Hgf‘” S C”f“l/?d?

and hence by the first part of the proof, there exists V € P (T), V =gy on y3, V =0 on
¥, t = L2, [Vlli7 < ollgsllij2.4s- Hence taking U = &y — V' we viiuin

NUr < Clfllij20r

and U = f on 3T. This concludes the proof. 0
Let S = {(z,y) | |zl < 1,]y] < 1} be a square and v, its sides as shown in Fig. 7.2.
THEOREM 7.5. Let S be the square shown in Fig. 7.2 and f be continuous on S and
such that f = flyi € Pp(vi), 1 = 1,...,4. Then there exists U € P3(S) such that U = f on
dS and

WUNh.s < Cllflli/2.0s

where the constant C is independent of p and f.
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F1G. 7.2. Notation scheme for the square

y

D F %
Y3

GT Y4 S 72 ¢ 1 ——z-»
B4

A +H B

Proof. Let T be triangle shown in Fig. 7.1 and Q@ = {({,7)l(¢,7) € T,n < 1}3/—3} be the
trapezoid shown in Fig 7.3. The mapping

1 3z 5 3v3

(zvy)'_’(faq)v £:§+T'6'(_y+§)7 77=(1+y)—1—€-.

maps S onto Q. The mapping is obviously one-to-one, smooth, the Jacobian and its inverse
are bounded, and the mapping is linear on 35. If U € P,(T) then

Ulgn) = > a*n’ = U(z,y) € PI(S).
u<k+y<p
Because the used mapping is smooth, it preserves all norms under consideration. By f
we denote the function on 8Q obtained by transformation of f and by f; we denote the
restriction of f on ¥,. First we construct the extension of f, as in Lemma 7.1. Hence we
can replace f by gl'! where g{'! = 0 on one side of S and (|g!"{|1/2.05 < Cl|flli/2.05- We can
assume that we achieved, say, g[|l] = 0 which leads to the case §; = 0. Extending 5["] by zero

we construct as in Lemma 7.2 the function #, = gP] on 4, ; = 0 on 4, and

”"jl”l.T < “f”l/z,as-

Hence we can replace f by g, g = 0 on two neighboring sides of S say 72, 73 and
19211, /2.05 < C|lfll1/2.55- Repeating once more the construction using Lemmas 7.2 and 7.1
we replace f by g so that ¢ = 0, say once more on 7, and v, and

g™ s2mume < Cllfllijzos, NgPlhiag < Clfllizoss g™ Nliic < Clfllijas.
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Fic. 7.3. Notation scheme for the trapezoid

Repeating once more the process and using Lemmas 7.1 and 7.2 we reduce our original
problem to the extension problem on S when ”g,m”,/z‘as < Clflly2.6s and )]g,[']ll,_,, <

Clifll1/2.05- 1t is now easy to construct v, € P3(S) so that v, = g on 85 and

foalls < 3l

which leads immediately to the desired result. O

Theorem 7.5 is concerned with the space P2(S). Theorem 7.5 does not hold for P;(S5),
but there is a weaker statement easily available.

THEOREM 7.6. Let the assumptions of Theorem 7.5 hold. Then there ezxists U € P)(S)
such that U = f on 3S and

WUls < Cplifili/2.0s

Proof. By Schmidt’s inequality {13}, || fll1+; < CP*||fllv~; and by interpolation,

lfilhe < CP”f”l/z,as-

Let us define
1 —
= f2) ()

and analogously U;, i = 2,3,4. Then V = Y'_, U, is continuous on 85 and V - f is linear
on every v,. Since |U;l|1.s < C||fill1 v, we have

IVIlis < Cpllflli/2.0s-
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Further with ¥, = V|,. we also have

If = Villia < CP”f”l/z.as-

Let U be the bilinear function such that U = f — V on 8S. Then also [[U|| < Cpl|fll1 2.0,
and U = V 4 U is the desired extension. O
Now let us turn to extensions where only some boundary values are given.
~ THEOREY 7.7. Let T be equilateral triangle, v, one of its sides and v, the opposite
verte}.\[/et fi € Po(m1). Then there exists f € P)(T) such that f = f, on vy, f(vs) =0, and

N 1fller < CllAllem -

Proof. By Lemma 7.1, there is Fy € P)(T) such that F\ = f, on 7y,

||F1H|,T .<_ C“fl”l/2,717 ‘Fl(vl)l < C“fl”l/2m'

It suffices to put F = f; — F|(v,)w, where w is the linear function such that w(v;) =1 and
w==0o0n+v. 0

Here is a similar theorem for the square.

THEOREM 7.8. Let S be square with sides v, to v, and f; € Py(yi). Then there exists
f € PXS) (resp. P}(S)) such that f = f; on v, f =0 on the opposite side 3, and

1fllis € Cllfilliyzas  (respe fllis < Cpllfillijza)

with C independent on f and p.
Proof. As in the procf of Theorem 7.5, transform S to a trapezoid of Fig. 7.3, and use
Lemma 7.1 to obtain function g € PZ(S) such that g = f, on v,, and

Ngllis < Cllfilli/2a

If follows immediately from the construction (7.1) that

lgli s < Cll fllom -

Let S be as in Fig. 7.2, i.e., v, characterized by y = —1, z € [-1,+1] and v3 by y = 1,
z € [-1,+1]. Let v(z,y) = g(z)(y + 1). Then v =0 on v;, v = g on 73, and

lvllis < Cliglh as-

Then f = g — v is the desired extension and it holds that

lg = vlhis < llglhis + llvllns < Cllfilli/zm -

The second case follows from the first one using Theorem 7.6. 0
Our last theorem is concerned with the extreme case of extending a function from a

vert2x onto a square.
19
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THEOREM T7.9. Let S be square with sides v, o v, and and A its vertex adjacent to -,
and v,. Then there ezists a constant C such that for all p > 1, there is a [ nction v € P}(5)
such that v(A) = 1, v = 0 on the fwo sides ¥, and y3 which are opposite to the verter A,
and

lvlls < C(1+logp)™/%

Proof. 1t suffices to prove the theorem only for all sufficiently large p. Mapping the
function from the second part of Theorem 6.2 onto the sides v, and -, so that the point —1
is mapped to the vertex 4, and extending the function by reflection also on v, and ¥4, we
get a function u on 05 such that

lulli /205 < C(1+logp)™ "%, w(A)=1.

Note that flulli;2a9s = /- llzlli/2 (up to equivalence of norms) by symmetry. The

=1

function u is not a polynomial, but its restriction to each side is a polynomial function. By
Theorem 7.5, there is an extension of u onto S such that v € P? and |lull; s < Cllulli/2.45-
Let w € P} such that w(A) = 1 and w = 0 on 7, and 73, and put v = wu. Then

Ivlh.s < Cllullis < C(1+logp)™"/%,  v(A)=1,
and

v € Ppyy C P
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

o To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

o To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

o To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Pregram and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

0 To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babufka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.




